Posts Tagged ‘carbon capture and sequestration’

Even as we struggle with heat waves, hurricanes, floods, wildfires, drought, and rising sea levels are as a result of climate change, the potential to sequester carbon in forests and soils offers hope. Humans have caused climate change by burning fossil fuels and disrupting the balance of nature, but there is an opportunity to restore these natural systems for carbon sequestration. Since we already used the carbon budget to keep global temperature increase to 1.5 degree Celsius, an action is needed to not only eliminate emissions but to recapture carbon dioxide that has already entered the atmosphere.

By stopping deforestation, and restoring degraded forests and soils we can combat climate change while improving biodiversity, soil productivity, and food security. Implementing better land management practices could be an important strategy to store carbon in the ground and lowering carbon emissions. Thus, curbing the rate of deforestation and improving land management and agricultural techniques should be a priority for policymakers at the federal and state levels in order to slow climate change, which has posed a significant threat to U.S agriculture.


Forests are one of the largest carbon sinks and are currently absorbing and storing 450 billion tons of carbon. Forests are not only important in storing carbon, but they also play a significant role in preventing floods, supporting wildlife, moderating extreme temperature, presenting cultural values and providing recreation. However, after the industrial revolution, people started cutting down and burning trees for construction, shipbuilding, and energy producing, which resulted in turning a large amount of carbon back into the atmosphere. Human activities are the main reason for releasing carbon dioxide back into the atmosphere, including through deforestation.

Between 2001 and 2017, 5.57 gigatons of carbon (Gt) was released into the atmosphere as a result of tree cover loss in the United States. The U.S is cutting trees to make wood chips and wood pellets and export them from ports in the Southeast to Western Europe. Last year, Southern U.S. was identified as the largest exporter of wood pellets in the world as a result of a 70 percent increase in wood pellet exports from Southern. In 2017, the U.S lost 2.3 million hectares (Mha) of forest equivalent to 175 metric tons (Mt) of CO₂ emissions. Continued deforestation will neutralize all climate action efforts and strategies.

Afforestation and Reforestation Opportunities:

Afforestation is the process of planting forests in areas that have never been forested, while reforestation is the recovering of forests in areas where forests were destroyed.  Reforestation and afforestation could make an important contribution to curb climate change and to improve the quality of air if managed appropriately. Thus, afforestation and reforestation are identified as negative emissions options since they are able to remove CO2 from the atmosphere.  Afforestation, reforestation, and improving land management and conservation practices as a means of solution for removing CO2 from the atmosphere have several benefits to the society and environment. Planting new trees and recovering forests protects against soil erosion, helps retain soil moisture, increases biodiversity, and controls flooding. Also, these efforts can enhance agricultural productivity and develop resilient food systems. Moreover, planting trees has lower cost and environmental impacts compared to other negative emission technologies such as Bioenergy Carbon Capture & Storage.

Enterprise 50 Year Tree Pledge Surpasses 12 Million Plantings, 100 Reforestation Projects.Photo by Eterprise holdings

Afforestation and Reforestation:

The main problem is that planting forests is not an instant solution, since it takes time for seedling trees to be matured. Also, if afforestation is not properly managed, it can result in a reduction of local biodiversity, the modification of particular biomes, the introduction of non-native and potentially invasive species, and lost revenue from agriculture. Native grasslands that are altered to forests may not contain the same habitat for local species, and ill-managed reforestation efforts may result in the production of a monoculture (the practice of growing a single tree species) that lacks not only plant diversity but reduces the number of available habitat types for forest inhabitants. In addition, the application of nitrogen fertilizers would have several negative impacts on the environment. The production of nitrogen fertilizer releases a group of potent greenhouse gases known as nitrous oxides, along with CO2. Nitrogen pollution is identified as a threat to the biodiversity of species and biodiversity loss is a major environmental challenge

Soil Carbon Sequestration Opportunities:

Soil is a major sink of carbon and can store twice as much CO2 than is in the atmosphere. Unfortunately, farming currently plays a significant role in releasing a large amount of carbon into the atmosphere. As a result of an increase in the global population and the demand for food, commercial planting with the use of nitrogen fertilizer has increased, and frequent harvesting has resulted in reduced carbon levels in the soil. However, there are several land management practices which help promote inappropriate farming techniques. “Soil Carbon Sequestration” is one of the techniques which implements as a tool to remove CO2 from the atmosphere and store it in the ground. Thus, soil as a carbon sink can play a vital role in agricultural strategies to curb climate change and offset greenhouse gas emissions.

Agriculture, forestry and other land use techniques that store CO2 in the ground offer an opportunity to mitigate climate change. Farmers can help soil hold more CO2 by making sure crop residue and animal manure re-enters the soil. However, the amount of carbon that soil can hold depends on several factors such as types of soil, regional climate, and characteristics of soil microbes. Healthy soils with more organic matter can store carbon while providing agricultural and environmental benefits. Soil carbon storage directly benefits farmers by improving soil fertility, reducing erosion and increasing resilience to droughts and floods.

Conservation practices such as agroforestry, no-till agriculture, planting cover crops, forest farming, and silvopasture all increase the amount of carbon that can be sequestered in the soil.

  • In agroforestry, crops are planted between rows of trees while the trees mature. The system can be designed to produce fruits, vegetables, grains, flowers, herbs, bioenergy feedstocks, and more. Agroforestry helps improve land productivity with several potential benefits for the communities such as reducing soil erosion, increasing plant growth, climate change adaptation, and increasing food security.
  • “Forest farming” also is a way to grow food, herbal, botanical, or decorative crops under a forest canopy that is managed to provide ideal shade levels as well as other products.
  • “Silvopasture” integrates trees with livestock and their forages on one piece of land. The trees provide timber, fruit, or nuts as well as shade and shelter for livestock and their forages, help animals from the hot summer sun, cold winter winds, or a heavy rainfall.

Soil Carbon Sequestration Challenges:

Land Management Techniques: Forest farming & Agroforestry methods to keep CO2 in the ground & improve soil fertilizing

The main problem is that the initiatives are all voluntary and have not been adopted on a large scale. Farmers are experiencing several barriers in the way of implementing smart agriculture. For example, tilling the soil is a traditional practice for controlling weeds, and shifting to no-till technique requires changing farm equipment and using other weed-control methods. Therefore, farmers have to encounter with the high costs of altering farm equipment and the risk of lower yields in the short-term.  Furthermore, the benefits of soil carbon-rich take a long time to be viable and the long-term benefits of healthier crops and resilient communities are spread among societies. Thus, incentives and subsidies play a vital role in encouraging farmers to invest in cultivating healthier soils and split costs of shifting to new techniques since implementing the sustainable land management practices is critical to curb climate change and keep CO2  in the ground.

However, in the Midwest, for instance, around 50% of U.S farmland is operated by renters, and around 80% of agricultural land is owned by a non-farming landlord. Therefore, it would be difficult to encourage investments in soil health because renting tenants face short-term costs but might not receive the long-term benefits. Thus, policy-makers should provide tax incentives and subsidies for renters and non-farming landlords to be able to apply the land management practices. Since enhancing soil carbon by practicing land management techniques can prepare us to be well adapted for the negative impacts of climate change on the agriculture industry, there is an imperative need to invest in this solution and develop more helpful regulations to improve farmland productivity and communities’ resiliency.

Overall, fixing these barriers need providing the greatest financial and technical assistance and improving research and development (R&D) efforts as well as increasing private partnerships and offering incentives for farmers and renters. Improving the land management practices and the climate-smart agriculture is required a coordination and integration between various sectors dealing with climate change, agricultural development, and food security at the national, regional and local level. Local governments can provide tax credits for private companies to invest in different types of research with an emphasis on supporting soil carbon storage and to encourage them to offer useful consultant for farmers.

In Conclusion:

Well-managed natural systems carbon sequestration projects, along with the arrangement of sustainably produced timber, agriculture, and energy will produce numerous benefits including additional income for rural development, improve communities’ resiliency, and promote conservation programs. In order to improve climate change mitigation and sustainable development programs, governments must carry out the resolution of sustainability practices and oversee the implementation of these practices. The success of carbon sequestration projects will depend on the high carbon prices and aggressive emission reduction goals. Also, the political willpower plays an important role in prioritizing forestry activities and land management practices as part of mitigation portfolios. Care should also be taken to avoid unintended environmental and socioeconomic impacts that could threaten the overall value of natural systems carbon sequestration projects.


Read Full Post »

As global temperatures continue to rise along with CO2 emissions, leaders in need of solutions should be cautious when considering the potential of bioenergy with carbon capture and storage (BECCS).  While the wholesale success of these technologies was assumed in many of the climate models used in developing the Paris Climate Agreement in 2015.

In the 2015 United Nations Climate Change Conference, the world agreed on implementing greenhouse gas mitigation plans which focus on producing negative carbon dioxide emissions to help curb climate change.

Illinois Industrial Carbon Capture and Storage Project. Capture CO2 from ADM’s Decatur corn processing facility and store it underground.

Bioenergy with carbon capture and storage (BECCS) facilities generate electricity by burning trees and crops that have taken CO2 from the atmosphere throughout their lifetime. When the biomass is burned, BECCS facilities capture the CO2 emissions and store them or, more often, use CO2 in order to enhance oil recovery (EOR). BECCS is one of the technologies the potential to achieve negative emissions if easy-to-grow feedstocks, such as switchgrass, are grown with sustainable practices and the captured CO2 is sequestered. However, these conditions don’t currently exist at commercial facilities.

BECCS Case Study: Illinois Industrial Carbon Capture and Storage Project

In April 2017, the U.S Department of Energy (DOE) announced that the Illinois Industrial Carbon Capture and Storage (ICCS) project at Archer Daniels Midland Company’s (ADM) Decatur corn ethanol facility had begun operations by injecting carbon dioxide into a large saline reservoir. The ICCS project stores more than 1 million tons of CO2 a year. The project captures CO2 from ADM’s Decatur corn processing facility, and stores it almost a mile and a half underground. The total project cost is $207.9 million and it has received a cost-share agreement of $141 million investment from the Department Of Energy. The project team members include ADM, Schlumberger Carbon Services, Illinois State Geological Survey (ISGS), University of Illinois, and Richland Community College (RCC). The technology demonstrated for this project aimed to help the development of the regional CCS industry (i.e., enhanced oil recovery in the depleted oilfields in the Illinois Basin).

Although the main purpose of BECCS technology is to reduce greenhouse gases and help combat with climate change, practically, CO2 has been captured in order to enhance oil recovery, which will result in more CO2 in the atmosphere. As the world’s focus is on keeping global temperature below 2 degree Celsius, using carbon capture storage (CCS) and BECCS in this way will perpetuate the use of fossil fuels. Also, emissions from the transportation of feedstock and the use of nitrogen fertilizer for growing crops could be a big challenge and accelerate the trend of global warming especially associated with ozone destruction.

The Illinois Basin Decatur facility and the EBCCS plant as a whole emit more CO2 than the BECCS plant has been designed to capture. The graphics info provided by Carbon Brief shows that the total CO2 emissions have been emitted by Decatur facility over 2.5 years of the operation was 12,693,283 tons of CO2. However, the EBCCS plant only absorbed 2,095,400 tons of CO2 which means that Decatur facility as a whole has emitted 10,597,883 tons of CO2 even with BECCS capacity. Thus, this project failed to fulfill the purpose of reducing carbon and curbing climate change.

The Illinois Basin Decatur Project. By Rosamund Pearce for Carbon Brief.

Caption: The Illinois Basin Decatur Project.  By Rosamund Pearce for Carbon Brief.

Challenges and Concerns of BECCS Projects:

  • High Cost of Capturing and Storing Carbon: It costs $100 to capture a ton of CO2 for a biomass plant. Whereas, fossil fuel plants are capturing carbon for about $60 a ton. This difference is based on varying bioenergy feedstock prices; energy production process; and capture technology. Also, transporting large amounts of biomass long distances to the storage site would significantly add to the cost of BECCS, since biomass tends to have a lot of weight relative to its energy.
  • Transporting CO2 to the reservoirs via pipelines or trucks: The transportation networks are costly and also turn more CO2 back into the atmosphere. More infrastructure – such as pipelines – would need to be built, which increases the cost of BECCS and indirectly results in more emissions through the construction process. Also, CO2 leakage from pipelines or storage sites could endanger people, harm marine ecosystems, and threaten freshwater ecosystem. Navigating the property rights of local communities can also be a challenge.
  • Effects of increased fertilizer use, such as nitrogen: Nitrogen fertilizers can be leached into the groundwater and washed into waterways, resulting in serious health, environmental, and economic damage. Nitrogen fertilizers applied in agriculture can add more nitrous oxide to the atmosphere than any other human activity. Nitrous oxide also moves into the stratosphere and destroys ozone which could result in increasing global heat. Nitrogen pollution is identified as a cause of decline in native species and is a threat to biodiversity for vertebrate, invertebrate and plant species. A study found 78 federally listed species identified as affected by nitrogen pollution. Use of fertilizer nitrogen for crop production also influences soil health, by reducing organic matter content and microbial life, and increasing acidity of the soil.
  • Water concerns: Agriculture and power generation are highly water intensive. In order to produce 1 ton of ethanol, 3.5 t of CO2 and 5 t of H2O is needed, which means that more than 21,000 t of CO2 and 300,000 t of water vapor are consumed each year. However, more than 3 billion people are already affected by water scarcity so it is a critical challenge in utilizing BECCS technology.
  • Food Scarcity: food prices would increase as a result of changes in land use. Also, since climate change has already threatened the crop yields harvest, sudden changes in the weather could result in food shortage or even famine in some regions. Altering lands to a specific crop yield would affect the land quality and may result in regional resource shortages.
  • Geological storage sites for CO2: In the fertile Midwest of the U.S., croplands are too far from geologic storage to be a viable location for BECCS in the near-term. There are relatively few pipelines in place for transporting CO2 and the long-distance transportation of large volumes of captured CO2 is expensive, particularly if many small pipelines have to be built. Biomass could be transported to sites where CO2 storage is available, but that would significantly add to the cost of a BECCS project.
  • Land Use challenges: Could displace or expose small farmers to the volatility of world markets. Also, as a result of changing land applications, soil erosion, and degradation could happen and soil would lose its fertility. Poor management of bioenergy crop production can result in soil carbon loss from direct and indirect land use changes and significantly affect the net amount of CO2 removed by BECCS. In addition, land rights of farmers & ranchers should be considered as important challenges as well.
  • Cost of Ethanol Production: Depending on a cost of a barrel of oil and production cost of gasoline refining, ethanol can either increase or slightly decrease the cost of a gallon of gasoline.

Overall, even though the U.S has a large potential for geological storage sites, there is still a need for transportation systems for either biomass or CO2 for the large-scale deployment of BECCS. Also, concerns associated with the land, water, and fertilizer use that would be required at the large-scale deployment of BECCS make the long-term economic viability of this technology uncertain. Tax incentives such as 45Q might cover some parts of the related costs, however, the health, environmental, and economic impacts of this project on the society is still unclear as well.

Overly optimistic assumptions about quickly achieving negative emissions on a large scale are dangerous. The world carbon budget is running out for 2 degree Celsius and we have already used the 1.5 degree’s carbon budget. While investments in BECCS are needed, these technologies do not give us a license to postpone eliminating emissions from other sources. And BECCS is only a solution if sustainable agriculture practices are employed, CO2 emissions are permanently sequestered and not used for oil recovery, and project sites are carefully selected to reduce emissions from transportation.

Read Full Post »

Carbon Engineering’s direct air capture facility sucks CO2 directly from the atmospheric air. – Carbon Engineering

To maintain climate, we need to cut greenhouse gas – especially carbon – emissions down to zero. The more greenhouse gases that are released, the hotter our planet will be. If we are seeking to keep the global temperature below 1.5-2 degree Celsius, we need to find a way to reduce CO2 emissions. Direct Air Capture (DAC) is a technology which sucks CO2 out of the atmosphere by using large fans that move air through a filter to generate a pure CO2 stream. Depending on the application of the captured CO2, DAC can be either a “carbon recycling” or “carbon removal” technology. Carbon recycling refers to the process of using CO2 produced by DAC as fuel, or in other ways which will release CO2 back into the atmosphere, such as to carbonated beverages. Carbon removal requires CO2 to be stored underground or used in materials that do not allow CO2 to be released into the atmosphere, such as in cement or plastics.

DAC Carbon Recycling Case Study: Carbon Engineering

Recently, “Carbon Engineering,” a Canadian-based company leading the commercialization of direct air capture technology, have been working on Air to Fuels project, which uses renewable electricity to generate hydrogen from water, and then combines it with CO₂ captured from the atmosphere to use it as an input to produce synthetic fuels that can substitute for diesel, gasoline, or jet fuel. DAC’s cost at a commercial scale is not exactly determined yet. However, the latest estimate cost announced by Carbon Engineering is a range cost from $94 to $232 per ton for capturing CO2 and they hope to produce fuels from the Air2fuel project for less than $1.00 per litter, once it scaled up.

DAC Carbon Removal Case Study: Climeworks

Direct air capture unit along with the cooling towers of the geothermal power plant in Hellisheidi, Iceland. (Climeworks/Zev Starr-Tambor)

Swiss firm Climeworks recently launched the world’s first “commercial” direct CO2 capture plant at Hinwil, Zurich. Climeworks has been working on CO2 for carbonated drinks and renewable fuels project through the partnership with CarbFix which working on the project of dissolving CO2 into drinking water. Also, the Gebrüder Maier fruit and vegetable company uses the captured CO2 to boost the growth of cucumbers, tomatoes, and aubergines in its large greenhouses. However, the most interesting project which is designed to be a carbon removal project is happening right now! Climeworks recently launched a pilot project in Iceland which is a geothermal power plant with direct air capture technology. The facility is capturing 50 metric tons CO2 from the air each year, which is equivalent to a single U.S household or 10 Indian households. The CO2 captured in order to convert the emissions into stone. Thus, they’re making sure that CO2 doesn’t escape back into the atmosphere for the next millions of years.

Climeworks / Julia Dunlop Carbon capture from ambient air goes commercial

Pros of DAC:

  • Full-scale operations are able to absorb significant amounts of carbon, is equivalent to the annual emissions of 250,000 average cars
  • DAC system can be sited anywhere which reduce the cost of transporting CO2 to the sequestration sites
  • DAC can be scaled easily and has a relatively small land footprint in comparison to other carbon removal technologies such as Bioenergy Carbon Capture Storage (BECCS)
  • DAC system produces fuels with 100x less land use footprint and less water use than biofuels.

Cons of DAC:

  • Energy Intensive: Direct air capture is a fairly energy intensive process because the concentration of CO2 in ambient air is relatively low. Separating CO2 from the air is challenging since it takes a significant amount of energy and air to separate and concentrate CO2 in the atmosphere. Thus, large volumes of air must be processed in order to collect meaningful amounts of CO2
  • Very Expensive: Currently, it is not a financially viable option because it is very expensive. The cost of CO2 captured from the atmosphere ranges between $94 and $232 per ton according to Carbon Engineering estimate
  • Water consumption concern: One study estimates for removing 3.3 gigatons of carbon per year, DAC could expect to use around 7.925e+13 gallons of water per year (assuming current amine technology, which is what Climeworks uses). This is equivalent to 4% of the water used for crop cultivation each year. Carbon Engineering using sodium hydroxide that would use far less, but this, in turn, is a highly caustic and dangerous substance
  • Revenue Opportunities: Revenue opportunities for DAC carbon removal systems depend on carbon markets and regulations. Without high enough carbon prices, DAC systems are likely to find the largest revenue opportunities by providing CO2 for manufacturing fuels, enhanced oil recovery, greenhouses and carbonated beverages, as DAC systems can be sited anywhere.

Climeworks direct air capture plant founders Christoph Gebald and Jan Wurzbacher onsite. Climeworks / Julia Dunlop

Policy Approach:

There have been some policies that provided a shift toward greater development and deployment of carbon dioxide removal and recycling. In February 2018, the U.S budget bill passed by Congress which extends and reforms the federal Section 45Q tax credit. 45Q provides credits for businesses that use CO2 for enhanced oil recovery (EOR) and for CO2 injection into underground geologic formations. Mostly, the 45Q tax credits benefits fossil fuels industry. Based on the bill, any new fossil-fuel power plant or carbon-dioxide producing industry that commences construction before 2024 is eligible for tax credits for up to 12 years. The tax credits offered up to $35 per metric ton of carbon dioxide captured if the CO2 is put to use (pushing out oil from depleting fields is the most popular use) or up to $50 if it is simply buried in underground storage. Hence, the bill benefits fossil fuels companies at a lower cost of carbon capture and help fossil fuels companies expand oil production, and continue to build coal plants. Thus, the carbon removal companies are not willing to sequestrate carbon when there is a market for selling it. The only way to make money off sequestration is if the government is directly subsidizing it or if there is an extremely high carbon price. Currently, there is no carbon price anywhere in the world great enough to make sequestration profitable. At present, carbon is trading at a low price in the global market compared to the cost of storing it underground.

However, tax credits could make negative emission projects more financially attractive and more economically viable. Based on the incentives provided by 45Q bill, direct air capture could be a critical tool for CO2 removal since it has a countless potential for removing carbon and reuse it. Since the high cost of the technology in pilot projects has been an obstacle to a large-scale implementation, hopefully, new regulations and tax credits such as 45Q bill ease the process and lower the costs. Although the tax credit will not cover the full cost of these technologies, it will make a noticeable reduction in the operating cost.

Tax credits and regulations mean greater opportunities for developers and suggest positive movement in wider efforts to stem climate change, as carbon capture and storage is widely considered to be a significant element of addressing climate change. Recently, several private investors and fossil fuels companies have started investments in DAC technology. Especially, the oil and coal industry since the captured CO2 can be used for Enhanced Oil Recovery (EOR). However, utilizing DAC technology to develop EOR would neutralize any efforts regarding climate mitigation actions.

Direct air capture could hold the promise of capturing CO2 from the atmosphere. However, since there is an economic benefit of using CO2 to make fuels or for enhanced oil recovery, fossil fuels industry are making money off the technology. In a time that there is relatively little carbon budget left to keep the world temperature below 1.5C or 2C, nations need to focus on cutting CO2 emissions rapidly by shifting their reliance away from fossil fuels to the renewable energy, in particular. (more…)

Read Full Post »

Petra Nova, the world’s largest post-combustion carbon capture project, has been in commercial operation at the W. A. Parish Plant in Thompsons, Texas, southwest of Houston, since January 2017. The project offers no hope for combating climate change.

Petra Nova Facility

The Parish station has 10 generating units, but only unit 8 has been upgraded with carbon capture technology, and thus, the other 9 units are still emitting CO2. The project was supposed to divert 40% unit’s exhaust into a post-combustion capture (PCC) system, which designed to capture 90% of the CO2 in that stream. However, once the emissions from the gas-fired turbine that powers the carbon capture system and the emissions from the additional petroleum products resulting from enhanced oil recovery are taken into consideration, the total impact of the carbon capture system is actually an estimated 2% increase in CO2 emissions.

The Petra Nova has retrofit cost $1 billion and benefitted from a $190 million Clean Coal grant from the U.S. Department of Energy. This huge amount of money has been invested to build a new coal power plant and enhance oil recovery by injecting 5,200 tons of carbon dioxide per day at West Ranch. However, NRG’s CEO has claimed that the Petra Nova CCS project “made both strategic and economic sense at $75 to $100 a barrel” and that “obviously [with West Texas Crude selling for less than US$50 a barrel], it does not currently make economic sense.”

Fossil fuel industries have promoted the use of CCS technology as a solution to enable the continued burning of fossil fuels for electricity generation. The coal industry has been seeking to increase its profit by lobbying Congress to get subsidies even though they are aware of the negative impacts of burning fossil fuels on the human health and climate change. Moreover, fossil fuel industries have influenced the EPA to reduce penalties and long-term liability to increase the profitability of CCS projects at the expense of public health and the environment.

Petra Nova Carbon Capture

Health and Environmental Impacts of CCS Technologies Include:

  • Power plants that are capable of capturing carbon require 15-25% more energy than conventional plants in order to capture and store CO2. The mining, transportation, and burning of the additional fuel (usually coal) needed for CCS produces more CO2 emissions.
  • Particulate matter and Nitrogen Oxide are both expected to increase as a result of the additional fuel consumption in order to capture carbon dioxide. Particulate matter is identified by the World Health Organization to be the deadliest form of air pollution as its ability to enter the respiratory system
  • Due to the degradation of the solvents in the process of capturing carbon, Ammonia is expected to increase, which can lead to form particular matter in the atmosphere
  • Possible damages or any leakage in the pipeline or storage reservoir would result in serious environmental impacts
  • Gradual leakage in the storage site can damage fresh groundwater resources if the incorrect storage site is selected or the site is not prepared correctly
  • Injecting CO2 into aquifers can cause acidification of the water and increase its ability to break down the surrounding rocks, aggregate the potential for leakage into the soils or water table, which could worsen the impact of climate change in ocean sinks as a major reservoir of carbon dioxide.

Since burning fossil fuels is the main reason for global warming, do we really need another coal power plant with CCS capability? Isn’t better to allocate federal tax credits and incentives for building energy storage or solar/ wind farms to generate electricity?

Recently, the average cost of solar energy has decreased by $2.71 to $3.57 per watt and the wind energy cost has dropped to around $30/MWh to $60/MWh in 2017. Solar battery energy storage technologies have also advanced and costs have declined by $400 dollars per kilowatt hour (kWh) to $750/kWh. Therefore, it is more viable and profitable to invest in the clean renewable energy to cut CO2 emissions instead of building new coal power plants with CCS capability.

As a result of a growth in the world population and energy demand, greenhouse gas emissions are increasing and have accelerated climate change. In order to combat climate change, nations must shift their reliance away from fossil fuels to renewable energy instead of applying new technologies to produce “clean coal.” Relying on carbon capture and sequestration (CCS) technologies to rescue the world from climate change instead of focusing action on reducing greenhouse gas emissions is a dangerous gamble.


Read Full Post »

One point we often forget when debating climate change strategies is the major economic case for changing our economy to new, clean technology.  A new study has been released on the impacts of the Kerry-Lieberman bill, which we’ve never been so hot on, but it shows that despite what the chicken littles at the Chamber of Commerce might spew about how a carbon cap is a jobs killer, it’s anything but.  From the NY Times articles on this story:

The Peterson Institute for International Economics said in its 18-page report that the bill from Sens. John Kerry (D-Mass.) and Joe Lieberman (I-Conn.) creates the new jobs between 2011 and 2020 because of its mandatory limits on greenhouse gases, which will prompt $41.1 billion in investments per year as the nation shifts away from traditional fossil fuels like coal and oil and toward new nuclear power and renewables.

So, good news, right? 

Looking closer at the study itself, we see something very interesting.  Michael Levi of the CFR points out that it looks more like this is a nuclear jobs bill than a climate bill,  echoing what Public Citizen’s Tyson Slocum has said repeatedly about this bill.

And indeed, here is average ANNUAL net job creation by industry from 2011-2020 according to page 12 the analysis:

  • Nuclear: 165,000
  • CCS: 96,000
  • Renewables: 19,000

Yikes.  Overall, this is a bad deal. And, this assumes that carbon sequestration is economical, safe, and practical.  But more on that later.

The sad thing is, we know what we need to do to create more jobs in renewable energy.  (more…)

Read Full Post »

According to a new study published in the Journal of Petroleum Science and Engineering on carbon capture and sequestration (CCS) by Michael Economides of the University of Houston and Christine Ehlig-Economides of Texas A&M University, clean coal is unlikely to prove a real solution to carbon emissions because the process of carbon capture and sequestration won’t prove feasible.

(EDITOR’S NOTE: It has been pointed out to us that many of these claims made by Dr. Economides may be overinflated or just plain spurious- a retort posted by NRDC here which we take very seriously.  Because we don’t believe in just throwing blog posts down the memory hole, we want to give this big caveat, and watch for a further discussion on CCS from us.) (more…)

Read Full Post »

The United States Department of Energy has sunk $154 million into a carbon capture and sequestration project in Texas proposed by NRG Energy near Houston. The “demonstration” project will be built on their existing Parish Generating Station in Thompsons, TX (one of the biggest and dirtiest coal plants in Texas and the United States). The project will only be capturing 60 megawatts worth of CO2 from the plant – or 400,000 metric tons of CO2 annually. In comparison the Parish plant currently generates 2,697 megawatts of power and releases over 21 million tons of CO2 every year. Also keep in mind that the CO2 from this “capture” process will be used in what’s called “Enhanced Oil Recovery” meaning that the CO2 being sequestered will be partially offset by the CO2 released when the resulting oil is burned. And even industry analysts have said that between 35-50% of the CO2 solution used in EOR comes back up during the oil recovery process, with this carbon being released back into the atmosphere. (more…)

Read Full Post »

Carson, California was recently on the path to becoming home to a pet-coke power plant, situated conveniently next door to the BP Carson refinery. The project, though touted as the “cleanest and greenest of energy plants possible,” would really have been an environmental and possibly a public safety nightmare. Luckily the project was scrapped, largely due to the activities of the Wilmington Coalition for a Safe Environment and other grassroots organizers.

Pet-coke, short for Petroleum Coke, is a petroleum by-product that can be burned to produce energy in a manner similar to coal. The proposed plant, which would have been built by BP America in conjunction with Edison International, would burn pet-coke as a means of producing energy — hydrogen. 90% of the carbon dioxide used would be pumped into the Wilmington oil field (This is a common method of enhanced oil recovery. The CO2 pushes the oil closer to the surface, making recovery more economic), which is a massive oil field stretching through Los Angeles county from San Pedro Bay to Long Beach. Needless to say, much of the land above this oil field is heavily populated with Los Angeles residents.

Recently I was able talk with Jesse Marquez, founder and Chief Director of Wilmington Coalition for a Safe Environment, about his victory over BP and Occidental and why this proposal was such a bad idea. (more…)

Read Full Post »